Heterogeneous Guanidine Catalyst for Lipid Conversion to Sustainable Biofuel

Tracy J Benson, Md. Rafiqul Islam, Keyvan Mollaeian, Bleinie Dickerson Lamar University, Beaumont, TX

AICHE Fall 2013

Back to the Origin of Biodiesel

Already in 1895 Rudolph Diesel tested vegetable oils (peanut oil) as fuel for his engine.

"The use of vegetable oils for engine fuels may seem insignificant today. But such oils may become in the course of time as important as the petroleum and coal tar products of the present time"

Rudolph Diesel, 1912

Biofuel Production Trend

Biodiesel

Fatty Acid Methyl Esters (FAME's) - Produced from triglyceride oils
Current Feedstocks

Row-crop oils such as soy, canola, peanut and sunflower

Animal fats such as tallow

Future Feedstocks

Microbial sources such as algae, fungi, yeast

Motivation for this Work

Lipid Building Blocks

Reaction Route for Glycerol-free Biodiesel

Reasons for Alternant Methylating Agent

- Glycerol is an unwanted byproduct
 - \checkmark 1 lb of glycerol produced for every 10 lb biodiesel produced
- Complex processing (water washing, crude glycerol, biodiesel finishing)
 - ✓ Crude glycerol catalyst salts, water
- Free Fatty Acids + water + NaMeO = Soap

Comparison of Biofuels

Parameters	MeOH-Biodiesel	DMC-Biofuel (Our Process)
Feedstock	Vegetable oil	Vegetable oil (Canola)
Products	FAME	FAME and FAGC
Byproduct	Glycerol (10 wt.%)	GDC (< 1wt.%)
Catalyst	NaOH/KOH	TBD
Maximum yield (%)	100	109.7
Neutralization	Required	Not required
Water washing	Required	Not required

 $Yield (\%) = \frac{Final weight of FAMEs + Final weight of FAGCs}{Initial weight of oil} X 100\%$

Catalysts used in Biodiesel Production

Catalyst	Homogeneous	Heterogeneous
Basic	NaOMe, KOMe	Zeolites
	Na_2CO_3, K_2CO_3	Oxides
	Guanidine	Hydrotalcite
Acid	H_2SO_4	Amberlyst 15
	HCl	Sulphated Al ₂ O ₃ -ZrO ₂
	H ₂ PO4	

Triazabicyclodecene (TBD)

Methods and Materials

- \Leftrightarrow Canola oil and DMC \rightarrow 1:3 mole ratio
- ☆ 2.5 wt% TBD catalyst (based on oil weight)
- ☆ Continuous stirring
- ☆ Reaction Temperature was 60°C
- \Leftrightarrow Duration of reaction was 6 hours
- \Leftrightarrow Sample extraction and preparation
- ☆ Product testing
 - ☆ GC-MS, GC-FID, FTIR
 - ASTM (RBFuels)

Process Developed in this Work

Specification	Value	Unit	Specification	Value	Unit
Flow of biofuel stream	1098.5	kg h⁻¹	DMC, GC and GDC	0.0052	kg h ⁻¹
Total glycerin	0.37	kg h ⁻¹	% Impurity DMC, GC and GDC	0.005	%
% Total glycerin	0.034	%	Total % impurity	0.035	%
ASTM specification for glycerin	0.24	%	Purity of biofuel	99.97	%

Layered Double Hydroxides

cationic layerW. Kagunya et al.
Chemical Physicsanionic layer236, 225–234 (1998)

 $[M^{2+}_{1-x} M^{3+}_{x} (OH)_{2}]^{x+} (A^{m-})_{x/m} \cdot nH_{2}O$ $x = M^{3+}/(M^{2+} + M^{3+})$

Simplicity of the preparation at high level of purity
Low cost, reusability and biocompatibility
High dispersion property
Surface basic properties and structural stability
LDHs display very high ionic exchange capacities
Can be organically modified with a variety of organic anions

Chemical Structures

(3-Glycidyloxypropyl) trimethoxysilane (3GPS)

Triazabicyclodecene (TBD)

Preparation by Coprecipitation Method

Structure of Modified and TBD Immobilized LDHs

Schematic representation of SDS and TBD arrangement in Mg-Al LDH structures (not in scale).

EDS analysis

Samples	Element % by mass ^a								
	С	Ν	0	Na	Mg	ΑΙ	S	Si	CI
SDS	59.86		18.13	9.22			12.79		
LDH-3		2.54	41.83	1.68	40.67	13.27			
LDH-4		9.03	46.72	2.17	34.08	7.99			
LDH-5		3.73	41.41	2.88	42.86	9.13			
SDS-LDH-3	60.15	1.64	18.16	0.85	5.58	1.20	12.42		
SDS-LDH-4	48.11	2.49	23.56	0.35	10.40	4.08	11.01		
SDS-LDH-5	34.97	2.32	28.73	0.08	10.06	11.84	11.94		
TBD-LDH-3	44.60	4.38	27.40	1.27	8.33	6.43	1.14	4.11	2.33
TBD-LDH-4	54.74	4.00	20.06	0.28	5.98	4.24	1.36	5.42	3.92
TBD-LDH-5	30.69	3.27	28.30	0.58	17.67	4.11	0.43	8.32	6.63

✓ SDS intercalated LDH samples contain around **12 mass% of S**.

- ✓ TBD immobilized samples show around **1 mass% S** remaining on the samples.
- ✓ We suggested TBD was linked with surface by a silicon coupling agent and EDS data shows the presence of Si in TBD-LDHs.

FTIR Results

Infrared spectra of (A) LDH-3, (B) SDS, (C) SDS-LDH-3, (D) SDS-LDH-4, and (E) SDS-LDH-5. Infrared spectra of (A) TBD, (B) TBD-LDH-3, (C) TBD-LDH-4, and (D) TBD-LDH-5.

Raman Results

Raman Results

Raman spectra of (A) TBD, (B) TBD-LDH-3, (C) TBD-LDH-4 and (D) TBD-LDH-5.

Measurement of Basic Sites

Calcined LDHs present basic sites that are associated to structural hydroxyl groups as well as strong Lewis basic sites associated to $O^{2-}M^{n+}$ acid–base pairs.

Mg/Al molar ratio in the gel	Inorganic anion	pH of suspension in water*	mmol basic sites per g of Mg-Al LDHs ^b
3	NO ₃	9.75	0.42
4	NO ₃	9.70	0.23
5	NO ₃	9.62	0.20
3	C12H25SO	9.94	0.10
4	C12H25SO	10.22	0.13
5	C12H25SO	10.41	0.16
3	TBD-C9H2002SIO,	10.44	0.43
4	TBD-C9H202SIO	10.62	0.40
5	TBD-C9H202SIO	10.78	0.33

*Suspension of 0.3g of Mg-Al LHD in 20 ml deionized water.

⁵0.15g Mg-Al LDH, suspended in 5 ml toluene and phenolphthalein indicator solution,

was titrated with 0.01M benzoic acid dissolved in toluene.

TG Conversion and Product Distribution

GDC (wt.%)

0.002

0.005

0.008

0.009

0.9

0.8

0.7

0.6 0.5

0.4 0.3 0.2

0.7 0.0 GDC concentration (wt%)

(A) LDH-3, (B) LDH-4, (C) LDH-5, (D)TBD-LDH-3, (E) TBD-LDH-4, (F) TBD-LDH-5

Summary and Future Work

A Homogeneous TBD catalyzed process was developed by laboratory experiments and simulated in Aspen Plus to produce glycerol-free biofuel from canola oil using alternative transmethylating agent, DMC.

A kinetic model for batch canola oil and DMC reaction using TBD as homogeneous catalyst has been developed after studying oil/DMC molar ratio, temperature and catalyst loading effects on the yield of products.

A Heterogeneous TBD-LDH catalyst was developed to combine the advantages of homogeneous catalysis with the best properties of heterogeneous materials, and was used for canola oil transesterification with DMC.

Ongoing Work:

✓ Heterogeneous reactor design and evaluation of kinetic parameters

- ✓ Catalyst robustness using real feedstock
- ✓ ASPEN model development
- ✓ Engine testing

THANK YOU

- ✓ Texas Hazardous Waste Research Center
- ✓ Renewable Biofuels (RBF), Inc
- Higher Education Assistance Fund (HEAF)

